Seventh-grade mathematics teaching paper 1: "seventh-grade freshmen mathematics teaching strategy" Keywords seventh-grade freshmen mathematics teaching solution
Students have just entered middle school from primary school, and great changes have taken place in psychology and physiology, as well as in mathematics teaching. On the basis of primary school mathematics, junior high school mathematics has added complex plane geometry, algebra, rational number, real number, linear function and quadratic function. This is too much and too difficult for students, so they are afraid of mathematics. Here are some concrete solutions to the problems that students in grade seven have in learning junior high school mathematics.
First, improve students' mathematics learning ability
Junior high school mathematics is more complex and abstract than primary school mathematics, especially the transformation from numbers to letters and from concrete to abstract. Some students with poor logical reasoning skills find it difficult to learn, and poor learning in seventh grade will affect their further study of mathematics in the future. Therefore, it is particularly important to improve students' mathematics learning ability. Logical reasoning ability is the primary and necessary ability for students to learn junior high school mathematics. In specific teaching, teachers should pay attention to the cultivation of students' logical reasoning ability.
For example, in geometry teaching, it is necessary to cultivate students' logical thinking of transforming written language into mathematical language.
Teacher: known: HC is? What can students know about the angular bisector of ACB from the known conditions?
Health: Because HC is the angular bisector, so? HCA and? The two angles of HCB are equal.
Teacher: yes, not only? HCA=? HCB, don't forget. HCA=? HCB=? ACB .
Teacher: It is known that AB//CD and straight line EF intersect with straight lines AB and CD at points G and H respectively. Please draw this picture.
Students draw a picture according to their own understanding of the conditions, as shown in figure 1.
Teacher:? AGH and? GHD is the inner corner, so? AGH=? GHD, what else can the students infer from the teacher's thinking?
Health: Because of AB//CD, so? FHD=? FGB and AGH+? CHG= 180? .
Teachers give examples first, and then let students observe and reason for themselves, so that students will not go astray because of difficulties in understanding knowledge points. Through step-by-step guidance, students' understanding ability and logical reasoning ability are gradually improved.
Second, grasp the convergence of teaching content
Compared with primary school mathematics, the content of junior high school mathematics is more systematic and rich. If teachers can't deal with the connection of mathematics teaching content in primary and secondary schools, it will directly lead to students' derailment in junior high school mathematics learning. Therefore, in the teaching process, teachers must pay attention to the connection between junior high school mathematics and primary school mathematics. When contacting a new knowledge point, we should first analyze the difference between primary school mathematics and junior high school mathematics, so that students can realize the systematization of junior high school mathematics, and at the same time give them full confidence, so that students will not be afraid because of the huge difference between junior high school mathematics and primary school mathematics.
For example, in? Rational number? My teaching process is as follows:
Teacher: Primary school mathematics studies the problem of arithmetic numbers, and now we begin to learn a new knowledge-rational numbers.
Students find the concept of rational number from books. The teacher introduces negative numbers and illustrates their usage with examples.
Teacher: Students, how to distinguish the elevation of a mountain from that of a basin?
Health: use negative numbers, just like a few degrees above zero and a few degrees below zero.
Teacher: That's right. In fact, the fundamental difference between rational number and arithmetic number is that rational number consists of two parts: symbol part and number part, and number part is arithmetic number.
Student: In other words, rational numbers only have more sign changes than elementary school arithmetic numbers.
Teacher: Yes, for example: (-5)+(-3). Students can determine the symbols first. -? , and then add up the parts of the number.
Health: The answer is (-5)+(-3)=-(5+3)=-8.
In the great transformation from arithmetic to rational number, teachers have made clear the direction and steps of cutting in, which makes the teaching content well connected with the content of primary school mathematics, and can help students understand rational numbers on the basis of primary school, so that students can feel that junior high school mathematics and primary school mathematics are in the same strain, thus adapting to the study of junior high school mathematics. In teaching, teachers should pay attention to the introduction of primary school mathematics content or examples from life, so as to narrow the distance between students and new knowledge, deepen their understanding of knowledge, and then practice in actual combat, so that students are no longer afraid of junior high school mathematics.
Third, cultivate students' good study habits.
Good study habits are extremely important for junior high school mathematics learning. In primary school, most students do not form specific study habits, and often take the completion of homework assigned by teachers as their main goal, and only read books when exams are near? Cramming at the last minute? . After entering junior high school, most students are very uncomfortable in the face of fast-paced learning. Therefore, teachers should devote themselves to cultivating students' good study habits so that students can easily face high-intensity learning tasks. In the study habits of junior high school mathematics, preview and review are particularly important.
1. Pay attention to preview.
Entering junior high school, the progress of mathematics teaching is suddenly accelerated, and the learning difficulty is gradually deepened, which makes it difficult for students to adapt. In the process of listening to the class, students are very confused about what the teacher said because they don't preview new knowledge, resulting in anxiety and impatience, which affects their continued listening to the class. Over time, it not only reduces the efficiency of class, but also undermines students' confidence and interest in learning junior high school mathematics. Therefore, when arranging the homework of learning content on the same day, teachers should take the preview of learning content on the next day as an assignment, and put forward the specific requirements of preview, guide students to preview methods, so that students can gradually develop the habit of preview.
2. Correctly grasp the rhythm and methods of review.
Review is also an extremely important study habit. According to Ebbinghaus's forgetting law curve, in the initial stage of memory, the forgetting speed is very fast, and then it gradually slows down. Therefore, if you don't consolidate the review in time after learning new knowledge, the learning effect will be greatly reduced. Teachers should emphasize the importance of review to students, explicitly ask students to review what they learned that day before doing homework, and review the knowledge of unit chapters in stages to strengthen the learning effect.
Review mainly includes two parts, one is to review and consolidate the knowledge points learned after the new lecture, and the other is to recall and review the knowledge before the exam. The first is to review and consolidate the knowledge points learned after the new teaching. In this link, students always feel that their study time is not enough, and it is difficult to finish the homework assigned by the teacher, let alone review, which requires students to learn to grasp the rhythm of review. Teachers should review what they have learned in class or comment on the connection between old and new knowledge points, and indirectly remind students of the importance of review by giving exercises in class, so that students can adapt to the rhythm and methods of teacher review in a subtle way and finally turn them into their own habits and methods. Secondly, the memory and review of pre-test knowledge. Teachers should remind students that review should be based on textbooks, deeply understand knowledge points and grasp key contents. In addition, the tested papers are also good review materials. The problems exposed in the exam are exactly what students should pay attention to, especially the seventh-grade freshmen. When they don't know where to start reviewing, they should cherish every paper, analyze it carefully, find out the weak links of their knowledge points, sum up the lessons of failure, and get growth and progress from it.
The above viewpoints are all based on my own teaching experience. Teachers should teach students in accordance with their aptitude according to the characteristics of the classes they teach, and don't copy them mechanically.
The seventh grade mathematics teaching paper II: "Three problems that should be paid attention to in the seventh grade mathematics teaching" Abstract: For the seventh grade students, they should first acquire the ability to adapt to junior high school mathematics learning, so as to shorten the transition period from primary school to junior high school. In order to help students acquire mathematical knowledge and adaptability more effectively in mathematics teaching, we should pay attention to some problems in mathematics teaching.
Keywords: seventh grade; Mathematics; attach importance to
1. Value? A little exercise? , in order to reflect the education of mathematics thought.
The teaching of mathematical thinking methods should follow several principles: first, the principle of turning the hidden into the present. It is to consciously let students take mathematical thinking method as a clear learning object, and teaching should take knowledge as the carrier to expose the thinking method hidden in knowledge. The second is the principle of gradual progress. It is necessary to combine the teaching content with the students' cognitive level, repeatedly gestate the process of conclusion development and formation, and adopt? Small steps? 、? Multistage? Ways to embody the teaching of mathematical thinking methods. The third is the principle of student participation. It should be recognized that students' participation in teaching is a dynamic and speculative teaching in the process of mathematical activities, which requires students to actively participate in it, so that students can gradually understand, form and master mathematical thinking methods.
We should teach according to these principles. For example, application problems are difficult for seventh-grade students to learn mathematics. Although the application problems at this stage have not really involved the actual application problems to a great extent, even so, some students still have a headache about it. In order to deal with this problem, we should pay attention to setting some simple and hierarchical exercises related to teaching problems according to the above principles in teaching, and let students gradually understand how to analyze and solve problems through these exercises. For example:
The distance between Station A and bilibili is 450 kilometers. A local train departs from Station A at a speed of 65 kilometers per hour, and an express train departs from bilibili at a speed of 85 kilometers per hour. (1) Two cars leave at the same time, in opposite directions. How many hours did they meet? (2) The express train leaves 30 minutes earlier than the local train, and the two cars are driving in opposite directions. How many hours did the local train run and meet the express train?
Before explaining the problem, we can ask students to think about the distance traveled by two cars in a specific time according to the idea of solving the problem, and deduce the expression of the distance traveled by X hours. Let the students think about two more cars? Meet? What are the characteristics of time, and what is the relationship between the distance between two stations and the distance between them? And let students think? 30 minutes before the express? Influence on the travel distance of each station and its relationship with the distance between two stations. Through this small exercise, let the students do it again along the correct problem-solving method and understand the problem-solving idea.
This kind of small exercise should have the characteristics of from shallow to deep, from simple to complex, and every step of the transition has a foreshadowing. If you add appropriate charts, students will not find it too difficult to do it. Obviously, the small exercise was completed by the students themselves under the guidance of the teacher, which is in line with? The principle of student participation? ; Practice pressing keys around the original question. Small steps? The way to ask questions in turn, the difficulty from shallow to deep, conforms to? Step by step principle? ; Small exercises will gradually show the basic characteristics of the original problem, so that students can see the relationship between the methods to solve the original problem and the methods they are familiar with. The principle of turning hidden into obvious? .
2. Pay attention to the individual differences of students.
In the past teaching, students often studied passively, without the opportunity to study actively and make independent decisions, so they lost their creativity and innovative spirit as masters of learning. The new round of basic education curriculum reform attaches great importance to respecting students' individual differences, respecting students' diversity, encouraging students to develop in all aspects, and adopting different educational methods and evaluation standards to create conditions for each student's development. As junior high school mathematics teachers, we need to innovate in educational ideas and concepts, establish new educational concepts, talent concepts and quality concepts necessary to adapt to the development of the times, constantly reform teaching methods on the basis of comprehensively implementing quality education, improve the quality of education and teaching, create a class curriculum teaching system that conforms to the laws of students' physical and mental development, stimulate students' initiative and creativity in learning, respond to students' full confidence and support, and lead them to find essential breakthroughs on the basis of all aspects of development. It is worth noting that personalization is not a popular thing. On the basis of popularization, it is a unique and unique statement to increase the demand for uniqueness and uniqueness. Create a different effect. Curriculum and teaching conditions are gradually taking shape. With the development of information technology, the application of multimedia computer and network (network is to connect isolated workstations or hosts with physical links to form data links, so as to achieve the purpose of resource sharing and communication) technology in the whole process of school teaching is expanding day by day, giving it personalization (that is, it is not a popular thing). On the basis of popularization, it is a unique and unique statement to increase the demand for uniqueness and uniqueness. Create a different effect. ) Teaching and differential education bring new opportunities to learners' interest and ability, and also bring new challenges to junior high school math teachers.
3. Mathematics teachers should correctly understand the essence of mathematics teaching.
Establishing a correct view of mathematics teaching has been briefly described as? Teachers' teaching and students' learning activities? . But this is too simple, which is not conducive to a comprehensive understanding of mathematics teaching. Skatkin, an educator in the Soviet Union, believes that teaching is a means to impart social experience, and what is taught through teaching is the patterns, schemas, general principles and standards of various relationships in social activities. This is a general narrative, focusing on the teaching content. Bruner, an American psychologist, believes that teaching is to improve students' understanding, transformation and transfer ability by guiding students to learn problems or knowledge systems step by step. This is a story about students' development. Whether it is a mathematics teaching theory constructed from the perspective of cognitive psychology or a mathematics teaching theory focusing on the future, mastering learning methods and displaying creative spirit, we must study the essence of mathematics teaching process, the principles of mathematics teaching, the development of teaching methods and means, and explore the scientificity, artistry and unity of mathematics teaching. In particular, it is necessary to adapt to the overall trend of the development of the information society and strive to promote the all-round, sustained and harmonious development of students. ? National compulsory education mathematics curriculum standard (experimental draft)? Part four? Curriculum implementation suggestions? Point out in:? Mathematics teaching is the teaching of mathematics activities and the process of interaction and common development between teachers and students? . It is emphasized here that mathematics teaching is an activity, which is a common activity of teachers and students, and it is of great significance for teachers to establish a correct concept of mathematics teaching. In the new curriculum, teachers will change from traditional knowledge givers to organizers, guides and collaborators of classroom teaching. Teaching work is increasingly unable to find a set of universally applicable models. Therefore, teachers must reflect and learn at any time in teaching work, and learn and create in practice in order to develop. In addition, the process of mathematics teaching is no longer the process of mechanically executing textbooks, but the process of teachers and students starting from reality and using a wider range of curriculum resources to jointly develop and enrich the curriculum. Teaching has truly become a personalized creative process for teachers and students. The new curriculum calls for creative teachers, and the new era will also bring up excellent teachers.
The seventh grade mathematics teaching thesis III: On the seventh grade mathematics interest teaching Abstract: The new century needs high-quality talents, interest is the premise of cultivating all kinds of qualities, and cultivating students' interest is the key to mathematics teaching. The cultivation of mathematics interest should start from the introduction, from classroom teaching and from study habits. Teachers should infect students with their interest in mathematics and the artistry of teaching, stimulate students' interest in learning mathematics, and at the same time cultivate students' abilities in all aspects to truly realize quality education.
Key words: learning interest, classroom practice, operation and study habits.
At the beginning of the seventh grade, students have a strong interest in mathematics, but before long, their interest gradually disappears, which has almost become a common problem in seventh grade mathematics teaching. For a long time, teachers have been making unremitting efforts to keep students' interest in learning. So, how to improve the learning interest of grade seven students? After continuous exploration and practice, I think we should start from the following aspects.
First, we should fully grasp the teaching in the introductory stage.
? A good beginning is half the battle? This is the guiding ideology of the compilers of compulsory education curriculum standard experimental teaching materials. After the seventh-grade students open their newly-acquired math textbooks, they generally feel novel and interesting, and their thirst for knowledge to learn math is more urgent. Therefore, teachers should spare no effort to impress students and generate strong interest in the initial stage of learning. For this reason, the teacher is teaching the first chapter of seventh grade mathematics? A preliminary understanding of geometric figures? Sometimes, we can use geometry teaching AIDS to teach, and let students observe geometry in daily life and do more hands-on operations in class to stimulate students' interest in learning. For example, in the third period of teaching? Geometric surface expansion diagram? Ask the students to cut open the cartons in groups, and stimulate students' interest in learning through practical operation. In this way, through the study of the first chapter, students' interest in learning is stimulated bit by bit, students' fear of learning mathematics is eliminated, and students' interest in mathematics and the artistry of teaching are infected, making them inseparable from magnets like iron filings on magnets.
Secondly, we should keep classroom teaching lively and interesting.
After students have a preliminary interest in mathematics learning, teachers should also grasp the psychological and physiological characteristics of seventh-grade students' changeable emotions and ask them to take? Living things to teach living students? Cultivate students' lasting interest in learning. In this regard, my specific approach is:
(A) Pay attention to the lead-in link in classroom teaching
A good lead-in design can make this course sound impressive and fascinating. More importantly, good lead-in can stimulate students' interest in learning and strong thirst for knowledge, create a good learning atmosphere and lay a good foundation for the success of teaching. The following are several classroom lead-in methods that I have summarized in my teaching practice.
1. Set the situation to stimulate interest.
Creating a good lead-in situation and stimulating inquiry motivation is the premise of guiding students' inquiry learning. Therefore, in the introduction stage, teachers should pay attention to the creation of situations, creating curious, confused, vivid and interesting situations, so that students can have interest in learning and then have a strong desire to actively explore. Teaching? Cutting geometry with a plane? Teachers can demonstrate by actually cutting tofu, thus stimulating students' interest in learning.
2. Set doubts and arouse interest.
? Is it doubtful that learning is expensive? This is common sense. Students will find problems in the process of learning mathematics, and only when they are interested in learning mathematics will they take the initiative. Aristotle once said: Thinking begins with questions and surprises. ? Therefore, teachers can also set up obstacles, deliberately create doubts and suspense, put forward some questions that must be answered when learning new knowledge, ignite students' curiosity and stimulate students' thirst for knowledge, thus forming a learning motivation.
3. Contact life and use it flexibly.
Mathematics is everywhere in life. In order to cultivate students' awareness of mathematical application, teach students to observe life and understand the mathematical factors in life, teachers should pay attention to the infiltration of real life in class and set up situations skillfully; Inspire students to discover some laws from real life, thus introducing new lessons. This method can make students improve their interest in learning in the joy of discovery, and at the same time help students understand and remember new knowledge.
(B) fully let students participate in the actual operation in classroom teaching.
According to the personality characteristics of seventh-grade students who like to watch and do things, the textbook arranges a lot of practical contents to stimulate students' interest in learning. Teachers should grasp the arrangement characteristics of teaching materials in teaching and let students participate in practical operations, such as teaching? Mixed operation of rational numbers? In a class, teachers can divide students into several groups, each group has a deck of playing cards (excluding big and small trump cards), so that students can randomly draw four cards, and then add, subtract, multiply and divide according to the numbers on the cards, so that the result is 24 or -24, which can stimulate students' interest and curiosity in learning.
In addition, teachers can also tell short stories related to mathematics knowledge and play small games. And add interesting elements appropriately to make seemingly boring mathematics vivid and concrete, and also make classroom teaching lively and interesting.
Third, we should pay attention to cultivating students' study habits in teaching.
Is there any arrangement for each chapter in seventh grade mathematics? Observing and thinking? 、? Explore together? 、? Do it. 、? Can we talk? And other columns, original and brand-new. Its purpose is to make students learn interesting, regular and rewarding as much as possible. To this end, I start with cultivating students' interest in learning in teaching practice, and gradually let students develop good study habits, so that mathematics interest can truly become a permanent interest. Specific practices:
(A) cultivate the habit of observation
Students are particularly interested in graphics and observation experiments. Teachers can guide them to observe purposefully and actively, and guide students to discuss and ask questions while observing. According to their observation and analysis, gradually guide the knowledge points. In this way, students can experience the harvest and excitement of observation and consciously form the habit of observation.
(B) cultivate the habit of thinking
The specific method is to ask thinking questions before or during class, such as teaching? Solve practical problems with a linear equation? Can you think of another way to solve this application problem? Encourage students to think in a variety of ways, praise students who answer correctly, and let students have the joy of success, thus generating interest and forming the habit of thinking.
(C) cultivate the habit of inquiry
By asking questions, teachers stimulate students to actively explore mathematical knowledge and gradually cultivate students' habit of cooperative inquiry. In particular, how many solutions does a problem have or does a problem need to be discussed in categories, such as teaching? Characteristics of parallel lines? Students can be asked to explore in groups. Through discussion, the properties of parallel lines are summarized.
The above is just my personal opinion on how to cultivate students' interest in learning in the process of mathematics teaching in grade seven. I hope all my colleagues can give me your advice. In actual teaching, teachers' methods and measures are varied and their experiences are different. For mathematics teaching, we need to study and discuss together.
References:
[1] edited by Yin Anqun. Effective teaching ―― Problems and countermeasures in junior middle school mathematics teaching. Northeast normal university press.
Guess you like it: 1. About the seventh grade mathematics related examination paper.
2. Junior high school mathematics teaching papers
3. About junior high school mathematics teaching test paper
4. Junior high school mathematics teaching thesis model essay
5. Junior high school mathematics education teaching papers