1, premise: Ax(F(x)→G(x)), Ex(H(x)∧F(x))
Conclusion: Ex(H(x)∧G(x))
Prove:
( 1)Ex(H(x)∧F(x))
(2)H(c)∧F(c) ( 1)EI
(3)H(c) (2) Simplification
(4)F(c) (2) Simplification
(5) Introduce ax (f (x) → g (x))
(6)F(c)→G(c) (5)UI
(7)G(c) (4)(6) Hypothetical reasoning
(8)H(c)∧G(c) (3)(7) Conjunction
(9)Ex(H(x)∧G(x)) (8)EG
2、f(4)= & lt; 5,4 >,f(-3)= & lt; -2,3 & gt;
F is a single shot. Because if f(x)=f(y), then
F is not a surjection. Because |x|≥0, if the second element of the ordered pair in Z×Z is negative, there is no corresponding element in z.