ys 1 = 10-a 1-d 1; ! Funds at the beginning of the year1;
yt 1 = ys 1+ 1.06 * d 1; ! Year-end funds1;
ys2 = yt 1-a2-C2-D2; ! Funds at the beginning of the second year;
yt2 = ys2+ 1. 15 * a 1+ 1.06 * D2; ! Funds at the end of the second year;
ys3 = yt2-a3-B3-C3-D3; ! Funds at the beginning of the third year;
yt3 = ys3+ 1. 15 * a2+ 1.06 * D3; ! Funds at the end of the third year;
ys4 = yt3-a4-B4-C4-D4; ! Funds at the beginning of the fourth year;
yt4 = ys4+ 1. 15 * a3+ 1.06 * D4; ! Funds at the end of the fourth year;
ys5 = yt4-b5-C5-D5; ! Funds at the beginning of the fifth year;
yt5 = ys5+ 1. 15 * a4+ 1.25 *(B3+B4+b5)+ 1.40 *(C2+C3+C4+C5)+ 1.06 * D5; ! Funds at the end of the fifth year;
C2+C3+C4+C5 & lt; 3;
max = yt5
end
Running results:
Finding the global optimal solution in iteration: 10
Objective value: 16.98 125.
Variable value reduces cost
ys 1 0.000000 0.93573 1 1E-0 1
a 1 1.00000 0.000000
d 1 0.00000 0.000000
yt 1 0.00000 0.000000
YS2 0.000000 0. 12205 19
A2 0.000000 0.00000
C2 0.000000.3055 19
D2 0.000000 0.3580 189 e-0 1
YT2 1 1.50000
YS3 0.000000 0.8 136792 e-0 1
A3 1 1.50000 0.000000
B3 0.000000 0. 1875000
C3 0.000000 0. 1875000
D3 0.000000
YT3
YS4 0.000000 0. 106 132 1
a4 0.000000 0.206 132 1
B4 0.000000 0. 106 132 1
C4 0.000000 0. 106 132 1
D4 0.000000 0.3 1 13208 e-0 1
YT4 13.22500 0.000000
YS5 0.000000 0.2500000
B5 10.22500 0.00000
C5 3.000000
D5 0.000000 0. 1900000
YT5 16.98 125 0.000000
Line slack or excess double price
1 0.000000 1.653 125
2 0.000000 1.559552
3 0.000000 1.559552
4 0.000000 1.437500
5 0.000000 1.437500
6 0.000000 1.356 132
7 0.000000 1.356 132
8 0.000000 1.250000
9 0.000000 1.250000
10 0.000000 1.000000
1 1 0.000000 0. 1500000
12 16.98 125 1.000000
Here a 1-a4 represents the annual investment of project A, and other symbols have similar meanings.