(a+b)×(a-b)=(a+b)×a-(a+b)×b = a×a+b×a-a×b-b×b = 2(b×a)
|(a+b)×(a-b)| = 2|b×a|=24
2) a={ 1,0,0 }; b={0, 1,-2 }; c={2,-2, 1}
a×b={0,2, 1}
Because α, a, b*** plane, α is perpendicular to the normal vector n of this plane, that is, n = a× b.
And α ⊥ C.
Let α={x, y, z}
α c =2x-2y-z=0
α (a×b) =2y+z=0
The solution is z =-2y;; x=2y
That is, α={-2y, y, 2y} and unitized α = {-2/3, 1/3, 2/3}.