Current location - Education and Training Encyclopedia - University ranking - University definite integral
University definite integral
To find indefinite integral first, we need to use universal method of substitution.

Let z = tan(x/2) and dx = 2dz/( 1+z? ),sinx = 2z/( 1 + z? )

∫ 1/(2 + sinx) dx

= ∫ [2/( 1 + z? )]/[2 + (2z)/( 1 + z? )] dz

= ∫ 1/[( 1 + z? )+ z] dz

= ∫ 1/[(z + 1/2)? + 3/4] dz

=(2/√3)arctan[(z+ 1/2)2/√3]+C

=(2/√3)arctan[(2 tan(x/2)+ 1)/√3]+C

Between partitions, pay attention to if? (x) = 1/(2 + sinx),? (0) = ? (π) = ? (2π)

f(x)=(2/√3)arctan[(2 tan(x/2)+ 1)/√3]

∫(0→2π) 1/(2 + sinx) dx

=∫(0→π) 1/(2+sinx)dx+∫(π→2π) 1/(2+sinx)dx

= [F(π)-F(0)]-[F(2π)-F(π)], x = π is a discontinuous point, divided into left and right limits.

= [lim(x→0) F(x) - lim(x→π? )F(x)] - [lim(x→2π) F(x) - lim(x→π? )F(x)]

= [π/(3√3) - (- π/√3)] - [π/(3√3) - π/√3]

= 2π/√3