So the original formula is
ai *(n-& gt; Unlimited) lim [(a1/ai) n+(a2/ai) n+...+(an/ai) n] (1/n)
Because ai is the largest in a 1, a2...an, (A 1/AI) n = 0 or 1.
1≤(a 1/ai)^n+(a2/ai)^n+...+(an/ai)^n≤n
Using the grip criterion, we can know that
(n->; Unlimited) lim [(a1/ai) n+(a2/ai) n+...+(an/ai) n] (1/n) =1.
So the original formula =ai