According to the equivalent infinitesimal:
√( 1+x) - 1 ~x/2
Primitive restriction
=lim(x→0) ∫(sin? x,0) ln( 1+t)dt / [(x^4)/2]
Look up the function y=ln( 1+t) in [0, sin? The integral on x] obviously satisfies the integral mean value theorem, so:
∫ (sin? x,0) ln( 1+t)
=ln( 1+ε) (sin? x-0)
= sin? xln( 1+ε)
Where: ε∈[0, sin? x]
Therefore:
Primitive restriction
=lim(x→0) sin? xln( 1+ε) / [(x^4)/2]
According to the equivalent infinitesimal:
sinx ~x
ln( 1+x) ~x
When x→0, the interval [0, sin? X] approaches 0, ε and sin? X is also close to zero, so:
ε ~ sin? x
So:
Primitive restriction
=lim(x→0) x? ε/[(x^4)/2]
=lim(x→0) x? x? /[(x^4)/2]
=2
This problem can also be solved by Robida's law, and molecules can be derived by variable limit integral!
Primitive restriction
=lim(x→0) ln( 1+sin? x) 2sinxcosx / 2x?
=lim(x→0) x? 2 2x// 2x?
=2