Let h' (c1) = (h (x0)-h (a))/(x0-a) = h (x0)/(x0-a), and h' (C2) = (h (b)-h (x0))/(b
∵h(x0)>0,x0-a & gt; 0,b-x0 & gt; 0,∴h'(c 1)>; 0 & gth'(C2) is derived from Lagrange mean value theorem.
ξ∈(c 1, c2) exists, so h'' (ξ) = [h' (C2)-h' (c1)]/(C2-c1), ∫. x0 & gtc 1,h '(C2)& lt; h'(c 1)
∴h''(ξ)<; 0, namely ξ∈(a, b), f'' (ξ) < g''(ξ)