1. function name sine resolution function y=sinx image sine curve (figure 1) 1. Define the domain R2. Range [- 1, 1] 3. Boundedness │y│≤ 14. The maximum value is x = 2kπ+π/. Y min=- 15。 Monotonically increasing interval [2kπ-π/2, 2kπ+π/2], k∈Z, decreasing interval [2kπ+π/2, 2kπ+3π/2], k∈Z, 6. Period t = 2π. 9. The asymptote does not have 10. Inverse function y=arc sinx II. Function name cosine analytic function y=cosx image cosine curve (Figure 2) 1. Define the domain R2. Range [- 1, 1] 3. Boundedness │ Y │≤ 65438. When x=2kπ+π, k∈Z, y min=- 15, Y max= 1. Monotonically increasing interval [2kπ-π, 2kπ], k∈Z, decreasing interval [2kπ, 2kπ+π], k ∈. 9. The asymptote does not have 10. Inverse function y=arc cosx III. Function name tangent resolution function y=tanx image tangent curve (Figure 3) 1. The domain {x│x≠kπ+π/2, x∈R, k∈Z}2. K∈Z,6。 Period T=π7. Even and odd odd function 8. Center of symmetry (kπ/2,0), k∈Z, 9. Asymptote x=kπ+π/2, k∈Z, 10. Inverse function y = arc tangent IV. Function name cotangent resolution function y=cotx image cotangent curve (Figure 4) 1. The domain {x│x≠kπ+π/2, x∈R, k∈Z}2. Range R3. 6. Period T=π7. Even and odd odd function 8. Symmetry center of symmetry (kπ/2,0), k∈Z, 9. Asymptote x=kπ, k∈Z, 10. Inverse function y=arc cotx hint: please refer to reference ① for the image.
②