Its x component: dEx=dEcosθ=? (λ0/4ωωR)sinθcosθdθ=? (λ0/8ωωR)sin 2θdθ
Its y component: dEy = desinθ=(λ0/4ωR)sin? θdθ
So: Ex=∫dEx=? (λ0/8ωωR)∫sin 2θdθ
Substituting the upper limit π/2 and the lower limit 0, we can get the integral: ex = λ 0/8 π ε r.
Ey=? (λ0/8ωωR)∫sin? θdθ=(λ0/8ωεR)(π/4)=λ0/32εR
Then: E=Ex i +Ey j= ......................