In addition, the moment estimation of X'=E(X), ∴ λ'=( 1/n)∑xi, i= 1, 2 ..., n.
② Maximum likelihood estimation. Let the likelihood function l (x, λ) = ∏ p (xi = k) = [e (-nλ)] (λ ∑ xi)/∏ [(xi)! ]。 Ask again? [lnL(x,λ)]/? λ, and let its value be 0, ∴-n+( 1/λ)∑xi=0. Maximum likelihood estimation λ'=( 1/n)∑xi, i= 1, 2, ..., n.
For reference.