There is no guarantee of right or wrong ... ~
mathematics
I. DACB II. AC=DF 45cm
Third, 1. ∫AO share ∠BAC
∴DO=EO
∴∠DOB=∠EOC
∵CD⊥AB BE⊥AC
∴ODB=∠OEC=90
Ⅶ in △BOD and △COE
∠ODB=∠OEC
DO=EO
∠DOB=∠EOC
∴△BOD≌△COE
∴OB=OC
2.AD = CE,AC=BC,∠A=∠ACB=60
∴△ACD≌△BCE(SAS)
∴∠ACD=∠CBE
∫△ABC is an equilateral triangle
∴∠ACD+∠BCD=60
∴△BFC,∠bfc = 180-∠CBE-∠BCD = 120。
I. DDDA II. BD = B'd' 180。
(1)∫△ABC is an equilateral triangle.
∴AC=BC
∫△DCE is an equilateral triangle
∴DC=CF
Every angle of an equilateral triangle is 60 degrees.
∴∠ACB=∠DCF=60
∴∠ACB+∠ACD=∠DCF+∠ACD
That is ∠ACE=∠DCB.
Ⅶ in △ACE and △BCD
AC=BC
∠ACE=∠BCA
CF=DC
∴△ACE≌△DCB
∴AE=DB
(2) established.
I. DDC II. 30 3 cm 90
(1) △ ace △ CBD can be obtained by HL theorem.
∴AE=CD
(2)BD=CE= 1/2BC=6cm
I. CDCB II. ∠ ADC = 2 ∠ ABC 50
Three. 1. As shown in the figure, the intersection point D is perpendicular to AB and AC respectively, and the vertical feet are G and H respectively.
Then ∠ gad+∠ adg = 90, ∠ had+∠ dah = 90.
That is ∠ BAC+∠ GDH = 180.
∴∠BAC+∠EDF= 180
∴∠GDH=∠EDF
∴∠GDH-∠GDF=∠EDF
That is, ∠EDG=∠FDH.
AD is the angular bisector.
∴DG=DH
∴∠DGE=∠DHF=90
∴△DEG≌△DFH
∴DE=DF
2. Using the principle of symmetry axis
First, DCCC second, congruent symmetry axis
3cm
B(-2,2) C(-2,-2)D(2,-2)
four
70 or 55.
Three. ∵△ABE's circumference is 10.
AE+BE+AB= 10。
And in △AEC, d is the midpoint of AC, ED⊥AC.
∴ED is the middle vertical line of triangle AEC.
That is, △AEC is an isosceles triangle.
∴AE=EC
CA = CB
∴AC+AB= 10
∫AC-AB = 2
∴AC=6 AB=4
∴CA=CB=6
I. CC II, 2 8 or 6 rectangles 1, 3, 8, 0 15
Third, 1. ∫DE vertically divides AB.
∴AD=DB
That is, ∠A=∠ABD.
Let 1 be x, then ∠DBC=2X, ∠A=∠ABD=3X.
∠∠DBC+∠A+∠ Abd +∠ ACB = 180, ∠ ACB = 90.
∴∠DBC+∠A+∠ABD=90
∫2X+3X+3X = 90°
∴∠A=3X=33.75
2.∫EF‖BC, BD is the bisector of ∠ABC.
∴∠EDB=∠DBC
Once again, ∠DBC =∠ Abd
∴∠EDB=∠ABD
∴△BDE is an isosceles triangle
And \ef \bc, CD is the bisector of ∠ACB
∴∠FDC=∠BCD
And material ≈BCD =∠AFD.
∴∠FDC=∠AFD
That is, △CFD is an isosceles triangle.
∴BE=EO CF=DF BE+CF=ED+DF=EF
∴EF=BE+CF
1. DCBD II. F, g, k, n and r are congruently symmetric 80 or 20 4: 1. The origin is symmetrical.
Three. 1.∫∠ABC = 40,DB=BA
∴∠D=∠BAD= 1/2∠ABC=20
∫∠ACB = 70,CE=CA。
∴∠E=∠EAC= 1/2∠ACB=35
∠∠ABC = 40,∠ACB=70
∴∠BAC= 180 -∠ABC-∠ACB=70
∴∠DAE=∠BAD+∠BAC+∠EAC= 125
2.∫△ABC is an equilateral triangle.
∴∠ACB=∠ABC=60
PE‖AB,PF‖AC
∴∠PEF=∠ABC=60,PFE=∠ACB=60
The remaining △PEF is an equilateral triangle.
1.BADCC 2。 The median line of its two opposite sides is 0.
Third, 1. AB = AC
∴∠B=∠C
AD = AE
∴BD=CE
M is the midpoint of BC.
∴BM=CM
∴△DBM=△ECM
∴DM=EM
∴MDE is an isosceles triangle.
2. the perpendicular line passing through point d intersects EF at point g.
∠CDF=∠GDF, and ∠ADE=∠GDE.
∴∠EDF=45
1. CBDC II. Countless 15cm 65 36
Third, 1. AB = AC
△ ABC is an isosceles triangle.
∵DE⊥BC
∴∠B+∠E=∠C+∠CFD=90
∴∠E=∠CFD
∠∠CFD =∠AFG again
∴∠E=∠AFG
△ AFE is an isosceles triangle.
The midline of the base of an isosceles triangle bisects the base vertically.
∴AG‖BC
leave out
Tip: √ = root sign
First, CDCAB II. x & gt0 1 2 a√b
Third, 1. ∫(2-a)? +√(a? +b+c)+|c+8|=0
∴a=2 b=4 c=-8
∵ax? +bx+c=0
∴2x? +4x-8=0
2x? +4x=8
x? +2x=4
∴x? +2x+ 1=4+ 1=5
2.( 1)(2)(3) The answers are all1(4) n-n+1=1.
I. CADBD
Two, three won't = =
First, DD second, cube root? √a 1/8 1/4 5/2√5 9. 1 1-0. 196
Three. 1.=-5 2.=3/2 3.=9/4 4.=60
Four. 1.2x- 1 =√5 2x =√5+ 1x =(√5+ 1)/2
2.2(x- 1)? = - 128 (x- 1)? = -64 x= -3
Verb (abbreviation of verb) ∵? √=3
∴x=27
√z-4=0
∴z=4
∴(2y- 12+2)? =0
2y= 10
y=5
√27+ 125+64= 12
2.(? √0. 125÷8)X6 = 0. 125 X6 = 1.5cm?
1. DBCB II. S=x(5+x/2)=5x+x? /2 x x y 25 12.5 S=3n+ 1
Three. 1.2A+ 1 = 02 B- 4 = 02A =- 12B = 4A =-0.5B = 2。
2.( 1)Q=200+ 10t (0≤t≤30)
(2)0≤t≤30
(3) Omission
1.BCBA 2。 Y= 1/3x+4 3 The third space will not be = =
Three. 1.( 1) m = 2 (2) m = 22。 (1) y = 50-2.5x (0 ≤ x ≤ 20) (2) omitted.
I. CBB II. Y = X-2 3
Three. 1.( 1) x = 4 (2) x
2.( 1)y 1 = 50+0.4x y2 = 0.5x(2)50+0.4x = 0.5x x = 500(3)y 1
First, CCC's fourth answer has no correct option.
Two. -2x reduction1-2-1-5y =180-1/2x0
Third, the image of 1 ∫ The proportional function y=kx passes through A(k, 2k).
∴2k=k? , k=0 or 2
When k=2, the coordinate of point B is (4,0). Combine A (2 2,4 4) B (4 4,0) and 1/2 to get y=-2x+8 (what? Link 1/2? When k=0, the AO line does not exist.
∴k=2 y=-2x+8
2.( 1)y= 10-2x (3≤x≤4)
(2) 10-2x=3 x=3.5
I. AACA II. 1200- 150 t0≤t≤845y = 2.2(0
Three. 1. is not 2.y=600- 100x(0≤x≤6).
3. (1) y = 0 (0 ≤ x ≤ 30) 0.2x-6 (x ≥ 30) (here, it is a binary linear system).
(2)30 kg
I. ADB II. h = 1200- 150t(0≤t≤8)2n+ 1。
3.1.y = 2.5x (x ≥10) y is a linear function of x and a proportional function.
2.∫ function y=kx passing point (√2, √2)
∴√2=k(-√2)
∴k=- 1
The positive proportional function is y =-x.
Point A(a, -4) is on the image.
∴-4=-a
∴a=4
∫ point B(-2√2, b) is on the image.
∴B= -(-2√2)=2√2
3.( 1)y =(x-2000)X5 % = y = 0.05 x- 100
②5 yuan ③ 0.05x-100 =1920.05x =101.92x = 2038.4.
First, BDDA II, the sixth power of -3x, the fourth power of Y (= = can't be typed), the twelfth power of 8 1a, 19 3 1, and the fourth small question will not be 4 -2.
Third, 1. = -(3xy? ) to the fifth power -9x? The sixth power of y (this is a multiplication symbol) (xy? )?
=-(3xy? ) to the fifth power-the fifth power of ——9x and the fifteenth power of y.
2.= 10a? b? +ba? b?
3.x? -x+ 15=x? +5x+4-6x = 4- 15 x = 1 1/6
4.5 (a power of 2 and b power of 2) = c.
5.[(4n+3m)+(2n-3m)] (m+2n)/2
=6n(m+2n)
=(6mn+ 12n? )÷2
=3mn+6n?
1. CCCD II. b? - 144 x? - 16y? x? + 16x+60 4 38 5 -24 2x? -Really? +2xy a? +2ab+b? -c?
Third, 1. =(x? -9)(x? +9) =x? -8 1
2.= x? -(2y-3/2)? =x? -4y? +9/4
3.=a? -4ab+4b? +b? +2b+ 1+99 =(a-2b)? +(b+ 1)? +99 =99
4.∫a-b = 2 b-c = 2 a+c = 14
Let c=x b=x+2 a=x+4.
∫a+c = 14
∴x+4+x= 14
The solution is x=5.
∴c=5 b=7 a=9
∴a? -B? =32
5.∫a(a- 1)-(a? -b)=2
∴a? -Ah.-Ah? +b=2
∴b-a=2
ab-a? +b? /2=2ab-(a? +b? )/2=a? -2ab+b? /2 x (- 1)=-2
6.x? +y? +4x-6y+ 14=(x? +4x+4)+(y? -6y+9)+ 1=(x+2)? +(y-3)? + 1
∫(x+2)? ≥0 (y-3)? ≥0
∴x? +y? +4x-6y+ 14 & gt; 0
I. Dialogue 2. - 10a? (a+3b)(x-y) a x- 14 a? -2ab- 1( 1-a+b)( 1+a-b)(x? +5x+5)?
Iii. 1.x? -Really? +x-3y =(x+y)(x-y)+x-3y = x+y+x-3y = 2(x-y)= 2
2.(x? +2xy-3y? )⊙(xy)=(x+3y)(x-y)⊙(x-y)= x+3y = 125
3. x+1+y (x+1) = 6 (x+1) (y+1) = 6 x =1,y=2 or x = 2 y =/kloc-.
4.a? -B? -2bc-c? =2? -(b+c)?
The sum of two sides of a triangle is greater than the third side.
∴0<; a & ltb+c
∴a? & lt(b+c)?
∴a? -(b+c)? & lt0
The sign is negative.
1. √××× 2. B. the second small problem will not be III. ≠2 -9
Four. 65438th power of n- 1+3x power of 0.8x -N-65438th power of n+0+2x-18x power of n.
=- 10x n+ 1 power +5x n power +2x- 1
2.=4/9a? The 6th power of x+the 4th power of 3ax-a? The fifth power of x
Verb (abbreviation of verb) ∫| a-b+3 | = 0
∴a-b=-3
∵(2a+b)? =0
∴2a+b=0
∴a-b=3 2a+b=0 (in this case, a system of binary linear equations) and get a= 1 b=-2.
2a? b(2ab+ 1)-a? (-2ab)? =4a? b? +2a? b-4a? b? =2a? b
Will it be 2a? B substitution evaluation, get 2x 1? x(-2)=-4
( 1)-2ab+BC+8ac-a b+ 2bc-3ac =-3ab+4bc-5ac
(2)-3ab+4bc-5ac-a B- 2bc+3ac =-4ab+7bc-6ac
Finally finished! ! ! ~! ! ~~~~~~~