Current location - Education and Training Encyclopedia - Educational institution - Beijing education publishing house new classroom holiday life winter vacation book eighth grade mathematics, Chinese answer, ah, speed!
Beijing education publishing house new classroom holiday life winter vacation book eighth grade mathematics, Chinese answer, ah, speed!
These questions are arranged in order from the first page.

There is no guarantee of right or wrong ... ~

mathematics

I. DACB II. AC=DF 45cm

Third, 1. ∫AO share ∠BAC

∴DO=EO

∴∠DOB=∠EOC

∵CD⊥AB BE⊥AC

∴ODB=∠OEC=90

Ⅶ in △BOD and △COE

∠ODB=∠OEC

DO=EO

∠DOB=∠EOC

∴△BOD≌△COE

∴OB=OC

2.AD = CE,AC=BC,∠A=∠ACB=60

∴△ACD≌△BCE(SAS)

∴∠ACD=∠CBE

∫△ABC is an equilateral triangle

∴∠ACD+∠BCD=60

∴△BFC,∠bfc = 180-∠CBE-∠BCD = 120。

I. DDDA II. BD = B'd' 180。

(1)∫△ABC is an equilateral triangle.

∴AC=BC

∫△DCE is an equilateral triangle

∴DC=CF

Every angle of an equilateral triangle is 60 degrees.

∴∠ACB=∠DCF=60

∴∠ACB+∠ACD=∠DCF+∠ACD

That is ∠ACE=∠DCB.

Ⅶ in △ACE and △BCD

AC=BC

∠ACE=∠BCA

CF=DC

∴△ACE≌△DCB

∴AE=DB

(2) established.

I. DDC II. 30 3 cm 90

(1) △ ace △ CBD can be obtained by HL theorem.

∴AE=CD

(2)BD=CE= 1/2BC=6cm

I. CDCB II. ∠ ADC = 2 ∠ ABC 50

Three. 1. As shown in the figure, the intersection point D is perpendicular to AB and AC respectively, and the vertical feet are G and H respectively.

Then ∠ gad+∠ adg = 90, ∠ had+∠ dah = 90.

That is ∠ BAC+∠ GDH = 180.

∴∠BAC+∠EDF= 180

∴∠GDH=∠EDF

∴∠GDH-∠GDF=∠EDF

That is, ∠EDG=∠FDH.

AD is the angular bisector.

∴DG=DH

∴∠DGE=∠DHF=90

∴△DEG≌△DFH

∴DE=DF

2. Using the principle of symmetry axis

First, DCCC second, congruent symmetry axis

3cm

B(-2,2) C(-2,-2)D(2,-2)

four

70 or 55.

Three. ∵△ABE's circumference is 10.

AE+BE+AB= 10。

And in △AEC, d is the midpoint of AC, ED⊥AC.

∴ED is the middle vertical line of triangle AEC.

That is, △AEC is an isosceles triangle.

∴AE=EC

CA = CB

∴AC+AB= 10

∫AC-AB = 2

∴AC=6 AB=4

∴CA=CB=6

I. CC II, 2 8 or 6 rectangles 1, 3, 8, 0 15

Third, 1. ∫DE vertically divides AB.

∴AD=DB

That is, ∠A=∠ABD.

Let 1 be x, then ∠DBC=2X, ∠A=∠ABD=3X.

∠∠DBC+∠A+∠ Abd +∠ ACB = 180, ∠ ACB = 90.

∴∠DBC+∠A+∠ABD=90

∫2X+3X+3X = 90°

∴∠A=3X=33.75

2.∫EF‖BC, BD is the bisector of ∠ABC.

∴∠EDB=∠DBC

Once again, ∠DBC =∠ Abd

∴∠EDB=∠ABD

∴△BDE is an isosceles triangle

And \ef \bc, CD is the bisector of ∠ACB

∴∠FDC=∠BCD

And material ≈BCD =∠AFD.

∴∠FDC=∠AFD

That is, △CFD is an isosceles triangle.

∴BE=EO CF=DF BE+CF=ED+DF=EF

∴EF=BE+CF

1. DCBD II. F, g, k, n and r are congruently symmetric 80 or 20 4: 1. The origin is symmetrical.

Three. 1.∫∠ABC = 40,DB=BA

∴∠D=∠BAD= 1/2∠ABC=20

∫∠ACB = 70,CE=CA。

∴∠E=∠EAC= 1/2∠ACB=35

∠∠ABC = 40,∠ACB=70

∴∠BAC= 180 -∠ABC-∠ACB=70

∴∠DAE=∠BAD+∠BAC+∠EAC= 125

2.∫△ABC is an equilateral triangle.

∴∠ACB=∠ABC=60

PE‖AB,PF‖AC

∴∠PEF=∠ABC=60,PFE=∠ACB=60

The remaining △PEF is an equilateral triangle.

1.BADCC 2。 The median line of its two opposite sides is 0.

Third, 1. AB = AC

∴∠B=∠C

AD = AE

∴BD=CE

M is the midpoint of BC.

∴BM=CM

∴△DBM=△ECM

∴DM=EM

∴MDE is an isosceles triangle.

2. the perpendicular line passing through point d intersects EF at point g.

∠CDF=∠GDF, and ∠ADE=∠GDE.

∴∠EDF=45

1. CBDC II. Countless 15cm 65 36

Third, 1. AB = AC

△ ABC is an isosceles triangle.

∵DE⊥BC

∴∠B+∠E=∠C+∠CFD=90

∴∠E=∠CFD

∠∠CFD =∠AFG again

∴∠E=∠AFG

△ AFE is an isosceles triangle.

The midline of the base of an isosceles triangle bisects the base vertically.

∴AG‖BC

leave out

Tip: √ = root sign

First, CDCAB II. x & gt0 1 2 a√b

Third, 1. ∫(2-a)? +√(a? +b+c)+|c+8|=0

∴a=2 b=4 c=-8

∵ax? +bx+c=0

∴2x? +4x-8=0

2x? +4x=8

x? +2x=4

∴x? +2x+ 1=4+ 1=5

2.( 1)(2)(3) The answers are all1(4) n-n+1=1.

I. CADBD

Two, three won't = =

First, DD second, cube root? √a 1/8 1/4 5/2√5 9. 1 1-0. 196

Three. 1.=-5 2.=3/2 3.=9/4 4.=60

Four. 1.2x- 1 =√5 2x =√5+ 1x =(√5+ 1)/2

2.2(x- 1)? = - 128 (x- 1)? = -64 x= -3

Verb (abbreviation of verb) ∵? √=3

∴x=27

√z-4=0

∴z=4

∴(2y- 12+2)? =0

2y= 10

y=5

√27+ 125+64= 12

2.(? √0. 125÷8)X6 = 0. 125 X6 = 1.5cm?

1. DBCB II. S=x(5+x/2)=5x+x? /2 x x y 25 12.5 S=3n+ 1

Three. 1.2A+ 1 = 02 B- 4 = 02A =- 12B = 4A =-0.5B = 2。

2.( 1)Q=200+ 10t (0≤t≤30)

(2)0≤t≤30

(3) Omission

1.BCBA 2。 Y= 1/3x+4 3 The third space will not be = =

Three. 1.( 1) m = 2 (2) m = 22。 (1) y = 50-2.5x (0 ≤ x ≤ 20) (2) omitted.

I. CBB II. Y = X-2 3

Three. 1.( 1) x = 4 (2) x

2.( 1)y 1 = 50+0.4x y2 = 0.5x(2)50+0.4x = 0.5x x = 500(3)y 1

First, CCC's fourth answer has no correct option.

Two. -2x reduction1-2-1-5y =180-1/2x0

Third, the image of 1 ∫ The proportional function y=kx passes through A(k, 2k).

∴2k=k? , k=0 or 2

When k=2, the coordinate of point B is (4,0). Combine A (2 2,4 4) B (4 4,0) and 1/2 to get y=-2x+8 (what? Link 1/2? When k=0, the AO line does not exist.

∴k=2 y=-2x+8

2.( 1)y= 10-2x (3≤x≤4)

(2) 10-2x=3 x=3.5

I. AACA II. 1200- 150 t0≤t≤845y = 2.2(0

Three. 1. is not 2.y=600- 100x(0≤x≤6).

3. (1) y = 0 (0 ≤ x ≤ 30) 0.2x-6 (x ≥ 30) (here, it is a binary linear system).

(2)30 kg

I. ADB II. h = 1200- 150t(0≤t≤8)2n+ 1。

3.1.y = 2.5x (x ≥10) y is a linear function of x and a proportional function.

2.∫ function y=kx passing point (√2, √2)

∴√2=k(-√2)

∴k=- 1

The positive proportional function is y =-x.

Point A(a, -4) is on the image.

∴-4=-a

∴a=4

∫ point B(-2√2, b) is on the image.

∴B= -(-2√2)=2√2

3.( 1)y =(x-2000)X5 % = y = 0.05 x- 100

②5 yuan ③ 0.05x-100 =1920.05x =101.92x = 2038.4.

First, BDDA II, the sixth power of -3x, the fourth power of Y (= = can't be typed), the twelfth power of 8 1a, 19 3 1, and the fourth small question will not be 4 -2.

Third, 1. = -(3xy? ) to the fifth power -9x? The sixth power of y (this is a multiplication symbol) (xy? )?

=-(3xy? ) to the fifth power-the fifth power of ——9x and the fifteenth power of y.

2.= 10a? b? +ba? b?

3.x? -x+ 15=x? +5x+4-6x = 4- 15 x = 1 1/6

4.5 (a power of 2 and b power of 2) = c.

5.[(4n+3m)+(2n-3m)] (m+2n)/2

=6n(m+2n)

=(6mn+ 12n? )÷2

=3mn+6n?

1. CCCD II. b? - 144 x? - 16y? x? + 16x+60 4 38 5 -24 2x? -Really? +2xy a? +2ab+b? -c?

Third, 1. =(x? -9)(x? +9) =x? -8 1

2.= x? -(2y-3/2)? =x? -4y? +9/4

3.=a? -4ab+4b? +b? +2b+ 1+99 =(a-2b)? +(b+ 1)? +99 =99

4.∫a-b = 2 b-c = 2 a+c = 14

Let c=x b=x+2 a=x+4.

∫a+c = 14

∴x+4+x= 14

The solution is x=5.

∴c=5 b=7 a=9

∴a? -B? =32

5.∫a(a- 1)-(a? -b)=2

∴a? -Ah.-Ah? +b=2

∴b-a=2

ab-a? +b? /2=2ab-(a? +b? )/2=a? -2ab+b? /2 x (- 1)=-2

6.x? +y? +4x-6y+ 14=(x? +4x+4)+(y? -6y+9)+ 1=(x+2)? +(y-3)? + 1

∫(x+2)? ≥0 (y-3)? ≥0

∴x? +y? +4x-6y+ 14 & gt; 0

I. Dialogue 2. - 10a? (a+3b)(x-y) a x- 14 a? -2ab- 1( 1-a+b)( 1+a-b)(x? +5x+5)?

Iii. 1.x? -Really? +x-3y =(x+y)(x-y)+x-3y = x+y+x-3y = 2(x-y)= 2

2.(x? +2xy-3y? )⊙(xy)=(x+3y)(x-y)⊙(x-y)= x+3y = 125

3. x+1+y (x+1) = 6 (x+1) (y+1) = 6 x =1,y=2 or x = 2 y =/kloc-.

4.a? -B? -2bc-c? =2? -(b+c)?

The sum of two sides of a triangle is greater than the third side.

∴0<; a & ltb+c

∴a? & lt(b+c)?

∴a? -(b+c)? & lt0

The sign is negative.

1. √××× 2. B. the second small problem will not be III. ≠2 -9

Four. 65438th power of n- 1+3x power of 0.8x -N-65438th power of n+0+2x-18x power of n.

=- 10x n+ 1 power +5x n power +2x- 1

2.=4/9a? The 6th power of x+the 4th power of 3ax-a? The fifth power of x

Verb (abbreviation of verb) ∫| a-b+3 | = 0

∴a-b=-3

∵(2a+b)? =0

∴2a+b=0

∴a-b=3 2a+b=0 (in this case, a system of binary linear equations) and get a= 1 b=-2.

2a? b(2ab+ 1)-a? (-2ab)? =4a? b? +2a? b-4a? b? =2a? b

Will it be 2a? B substitution evaluation, get 2x 1? x(-2)=-4

( 1)-2ab+BC+8ac-a b+ 2bc-3ac =-3ab+4bc-5ac

(2)-3ab+4bc-5ac-a B- 2bc+3ac =-4ab+7bc-6ac

Finally finished! ! ! ~! ! ~~~~~~~