Current location - Education and Training Encyclopedia - Education and training - Liaocheng oe English training
Liaocheng oe English training
Prove that: (1) connects oc,

∵AB is the diameter ⊙ O, CD⊥AB,

∴ce=de= 12cd= 12×43=23,

Let OC=x,

BE = 2,

∴OE=x-2,

In Rt△OCE, OC2=OE2+CE2,

∴x2=(x-2)2+(23)2,

Solution: x=4,

∴OA=OC=4,OE=2,

∴AE=6,

At Rt△AED, AD=AE2+DE2=43,

∴AD=CD,

∵AF⊙O tangent,

∴AF⊥AB,

∵CD⊥AB,

∴AF∥CD,

∫CF∨AD,

∴ Quadrilateral FADC is a parallelogram,

AD = CD,

∴ parallelogram FADC is a diamond;

(2) Connection of AC power supply,

The square FADC is a diamond,

∴FA=FC,

∴∠FAC=∠FCA,

AO = CO

∴∠OAC=∠OCA

∴∠FAC+∠OAC=∠FCA+∠OCA

That is ∠ OCF = ∠ OAF = 90.

Namely OC⊥FC,

Point c is on ⊙O,

∴FC is the tangent of⊙ O.