∵AB is the diameter ⊙ O, CD⊥AB,
∴ce=de= 12cd= 12×43=23,
Let OC=x,
BE = 2,
∴OE=x-2,
In Rt△OCE, OC2=OE2+CE2,
∴x2=(x-2)2+(23)2,
Solution: x=4,
∴OA=OC=4,OE=2,
∴AE=6,
At Rt△AED, AD=AE2+DE2=43,
∴AD=CD,
∵AF⊙O tangent,
∴AF⊥AB,
∵CD⊥AB,
∴AF∥CD,
∫CF∨AD,
∴ Quadrilateral FADC is a parallelogram,
AD = CD,
∴ parallelogram FADC is a diamond;
(2) Connection of AC power supply,
The square FADC is a diamond,
∴FA=FC,
∴∠FAC=∠FCA,
AO = CO
∴∠OAC=∠OCA
∴∠FAC+∠OAC=∠FCA+∠OCA
That is ∠ OCF = ∠ OAF = 90.
Namely OC⊥FC,
Point c is on ⊙O,
∴FC is the tangent of⊙ O.