Year =1:10;
p=[
46.2 1
32.6 2
26.7 3
23.0 4
20.0 5
18.9 6
17.5 7
16.3 8
15.2357 9
14.4650 10
]';
t=[
32.6
26.7
23.0
20.0
18.9
17.5
16.3
15.2357
14.4650
13.8732
]';
% to normalize the original data.
[pn,meanp,stdp,tn,meaned,stdt]=prestd(p,t);
% to establish the corresponding BP network
net = newff(minmax(pn),[7, 1],{'tansig' 'purelin' },' train gdx ');
% training network
net . train param . epochs = 2000;
net . train param . goal = 0.000 1;
net = train(net,pn,TN);
% to simulate the trained network.
an=sim(net,pn);
a=poststd(an,meant,stdt);
% draw a simulated image
Plot (year, t,' b', year, a,' r');
Title ("Analog Image")
p _ new =[ 13.5 13]';
pn_new=trastd(p_new,meanp,stdp);
an_new=sim(net,pn _ new);
a=poststd(an_new,meant,stdt)
This is a neural network. You can try to predict the data.