Who discovered the secret of heredity?
Mendel, the father of genetics. Gregor Johann Mendel (1July 20th, 822-18841October 6th) is the "father of modern genetics" and the founder of genetics. The law of heredity was discovered in 1865. Shortly after Mendel returned to Bruen from Vienna University, he began his pea experiment for eight years. Mendel first got 34 varieties of peas from many seed vendors, and selected 22 varieties for experiments. They all have some stable characters, which can be distinguished from each other, such as tall or short stems, round or wrinkled materials, and gray or white seed coats. Mendel carefully observed, counted and analyzed the characters and quantity of peas in different generations by artificially cultivating these peas. Using this experimental method requires great patience and rigorous attitude. He loves his research work, and the guests who often visit him point to Doudou and say proudly, "This is my child!" " "After eight years of hard work, Mendel discovered the basic laws of biological inheritance and got the corresponding mathematical relationship. People call his discovery "Mendel's first law" and "Mendel's second law" respectively, which reveals the basic laws of biological genetic mystery. When Mendel started experimenting with peas, Darwin's theory of evolution had just come out. He studied Darwin's works carefully and absorbed rich nutrition from them. Among Mendel's relics preserved to this day, there are several Darwin's works with Mendel's handwriting on them, which shows his concern for Darwin and his works. At first, Mendel's pea experiment was not to explore genetic laws. His original intention was to obtain excellent varieties, but during the experiment, he gradually shifted his focus to exploring genetic laws. In addition to peas, Mendel has done a lot of similar research on other plants, including corn, violets and mirabilis jalapa, to prove that the genetic laws he discovered are applicable to most plants. It is difficult to observe and discover the genetic law from the overall form and behavior of organisms, but it is easy to observe from individual traits, which is also the reason for the long-term confusion in the scientific community. Mendel not only inspects the whole organism, but also pays attention to its individual characters, which is one of the important differences between him and his predecessors. Mendel's experimental materials are also very scientific. Because pea is a self-pollinating plant, its variety is stable, easy to plant and separate, and it is counted one by one, which provides favorable conditions for him to discover the genetic law. Mendel knew that his discovery was of epoch-making significance, but in order to improve it, he carefully repeated the experiment for many years. 1865, Mendel read out his research results twice in the conference hall of Bruen Science Association. The participants listened to the report politely and happily for the first time. Mendel briefly introduced the purpose, method and process of the experiment. The one-hour report puzzled the audience. The second time, Mendel made an in-depth theoretical proof based on experimental data. However, the great Mendel's thoughts and experiments are too advanced. Although most of the participants are members of Bruen Natural Science Association, there are chemists, geologists and biologists, as well as botanists and algae experts in biology. However, the audience is not interested in endless numbers and complicated and boring theories. They really can't keep up with Mendel's thinking. Mendel's secret, told by painstakingly watered peas, has been buried for 35 years. In his later years, Mendel confidently said to his good friend Geser, a professor of geodesy at Bruen Institute of Advanced Technology, "Look, my time has come." This sentence became a great prophecy. It was not until Mendel's death 16, 34 years after the pea experiment paper was officially published, and 43 years after the pea experiment, the prediction became a reality. With the cock crowing for the first time in the 20th century, three scholars from three countries independently "rediscovered" Mendel's genetic law. 1900 is an epoch-making year in the history of genetics and even in the history of biological sciences. Since then, genetics has entered the Mendel era. Today, after the research of several generations of scientists such as Morgan, Avery, hershey and Watson, the problem of biological genetic mechanism that puzzles Mendel has been based on the genetic material DNA. With scientists deciphering the genetic code, people have a deeper understanding of the genetic mechanism. Now, people have begun to control the genetic mechanism, prevent genetic diseases and synthesize life, which will be more beneficial to human beings. However, all this is related to the name of the monk who devoted himself to science in St. Thomas Cathedral.