When r ≤ R, we get e1* 4 π R2 = (1/ε 0) ρ (4/3) π R3.
E 1=ρr/(3ε0)
When r > r, E2 * 4 π r 2 = (1/ε 0) ρ (4/3) π r 3 is obtained.
E2=ρR^3/(3ε0 r^2)
The potential energy φ (p) = ∫ (p: ∞) EDL at any point.
When r ≤ R, φ1(r) = ∫ (r: r) e1dr+∫ (r: ∞) e2dr = ∫ρr/(3ε 0) dr+∫ρr 3/(.
=ρ(3R^2-r^2)/(6ε0)
When r > r, φ 2 (r) = ∫ (r :∞) e2dr = ∫ρr 3/(3ε 0r 2) dr = ρ r 3/(3ε 0r).
2 With the center of the arc as the origin, put the arc directly above it (draw a picture yourself). Take a short section of ds on the arc, the angle between DS and Y axis is α, and the central angle of DS is ds dα, then ds=adα. This short charge dq=λds=λadα.
In which the electric field intensity at the center of excitation of wire density λ=q/aθ dq is de = dq/4 π ε 0a 2.
By the symmetry ex = 0e = ey = ∫ dey = ∫ de cos α = (λ/4 π ε 0a) ∫ (-θ/2: θ/2) cos α d α.
=(λ/4ω0a)* sinα=(λ/2ω0a)* sin(θ/2)
= q/(2 π ε 0a 2 θ) * sin (θ/2) direction downward.