①
C'=0(C is a constant function)
②
(x^n)'=
nx^(n- 1)
(n∈Q *); Remember the derivative of1/x.
.
③
' sinx '
=
cosx
' cosx '
=
-
Sinks
(tanx)'= 1/(cosx)^2=(secx)^2= 1+(tanx)^2
-(cotx)'= 1/(sinx)^2=(cscx)^2= 1+(cotx)^2
(secx)'=tanx secx
(cscx)'=-cotx cscx
(arcsinx)'= 1/( 1-x^2)^ 1/2
(arccosx)'=- 1/( 1-x^2)^ 1/2
(arctanx)'= 1/( 1+x^2)
(arccotx)'=- 1/( 1+x^2)
(arcsecx)'= 1/(|x|(x^2- 1)^ 1/2)
(arccscx)'=- 1/(|x|(x^2- 1)^ 1/2)
④(sinhx)'=coshx
(coshx)'=sinhx
(tanhx)'= 1/(coshx)^2=(sechx)^2
(coth)'=- 1/(sinhx)^2=-(cschx)^2
(sechx)'=-tanhx sechx
(cschx)'=-cothx cschx
(arsinhx)'= 1/(x^2+ 1)^ 1/2
(arcoshx)'= 1/(x^2- 1)^ 1/2
(artanhx)'= 1/(x^2- 1)
(| x | & lt 1)
(arcothx)'= 1/(x^2- 1)
(| x | & gt 1)
(arsechx)'= 1/(x( 1-x^2)^ 1/2)
(arcschx)'= 1/(x( 1+x^2)^ 1/2)
⑤
(e^x)'
=
e^x
(a^x)'
=
(a^x)lna
(ln is the natural logarithm)
' Inx '
=
1/x(ln is the natural logarithm)
' logax '
=x^(- 1)
/lna(a & gt; 0 and a is not equal to 1)
(x^ 1/2)'=[2(x^ 1/2)]^(- 1)
( 1/x)'=-x^(-2)
I don't remember the fourth category, which is the content of the university.
I hope the answer will help you!