Current location - Education and Training Encyclopedia - University rankings - Higher mathematics problems in colleges and universities
Higher mathematics problems in colleges and universities
∫ sin? xcosxdx=∫sin? xd(sinx)=( 1/4)sin? x+C

∫( 1/(x? -x-6))dx =( 1/5)∫( 1/(x-3)- 1/(x+2))dx =( 1/5)(∫( 1/(x-3))d(x-3)-( 1/(x+2))d(x+2))=( 1/5)(ln | x-3 |-ln

∫cosxe^(sinx)dx=∫e^(sinx)d(sinx)=e^(sinx)+c

∫ (dx)/(√ x) (1+x) order √ x = t, then x = t? So the original formula = ∫ d (t? )/(t( 1+t? ))=2∫( 1/( 1+t? )) dt = 2arctant, t = √ x, so the answer is = 2arctan √ x+c.

∫( 1/( 1+? √x))dx makes t =? √x So x = t? So there is the original formula = ∫ d (t? )/( 1+t)=3∫t? /( 1+t)dt=3∫(t? - 1+ 1)/∫∫( 1+t)dt = 3∫((t? - 1)/( 1+t)+ 1/( 1+t))dt = 3∫(t- 1)+( 1/(t+ 1))dt = 3(( 1/2)(t- 1)? +ln | t+ 1 |)+c and t =? X So the answer is (3/2) (? √x- 1)? +ln|? √x+ 1|)+C

∫? √ x/(√ x+ 1) dx order t? = x is the original formula = ∫ t/(t? + 1)d(t? )=4∫t? /(t? + 1)dt=4∫(t? - 1+ 1)/(t? + 1)dt=4∫((t? - 1)+ 1/(t? + 1))dt=4(( 1/3)t? -t)+4arctant+c and t =? √x So the answer = 4 (( 1/3) (? √x)? -? √x)+4arctan(? √x)+C