Original formula = lim (n->; ∞){[( 1-a(n+ 1))/( 1-a)]/[( 1-b(n+ 1))/( 1-0)
=[( 1-0)/( 1-a)]/[( 1-0)/( 1-b)]
(∵│a│& lt; 1,│b│& lt; 1,∴lim(n->; ∞)[a^(n+ 1)]=lim(n->; ∞)[b^(n+ 1)]=0)
=( 1-b)/( 1-a).