V=kx
So the acceleration a=dv/dt= (dv/dx)(dx/dt)
dv/dx=k dx/dt=v
So a=kv
Then F=ma = mkv.
(2) v=dx/dt=kx
Separation variable: (dx)/x=kdt
Integral: lnx=kt+C is substituted into the initial condition: t=0 x=x0, and the solution is: C=lnx0.
So: ln(x/x0)=kt.
When x=x 1, t = [ln (x1/x0)]/k.