∴△BCD is an isosceles right triangle.
∴BD=CD.
∠ DBF = 90-∠ BFD, ∠ DCA = 90-∠ EFC and ∠BFD=∠EFC,
∴∠DBF=∠DCA.
In Rt△DFB and Rt△DAC,
∠∠DBF =∠DCA BD = CD∠BDF =∠ADC
∴Rt△DFB≌Rt△DAC(ASA).
∴bf=ac;
(2) proof: ∫ divided into equal parts ∠ABC,
∴∠ABE=∠CBE.
In Rt△BEA and Rt△BEC.
∠ABE=∠CBEBE=BE∠BEA=∠BEC,
∴Rt△BEA≌Rt△BEC(ASA).
∴CE=AE= 12AC.
From (1), BF=AC,
∴ce= 12ac= 12bf;
(3) Proof: ∠ ABC = 45, CD is perpendicular to AB and D, then CD = BD.
H is the midpoint of BC, and then DH⊥BC (isosceles triangle "three lines in one")
If CG is connected, BG=CG, ∠ GCB = ∠ GBC =12 ∠ ABC =12× 45 = 22.5, ∠ EGC = 45.
And ∫ perpendicular to AC, so ∠ EGC = ∠ ECG = 45, CE = Ge.
∵△GEC is a right triangle,
∴CE2+GE2=CG2,
∫DH vertically divides BC,
∴BG=CG,
∴ce2+ge2=cg2=bg2; Namely 2CE2=BG2, bg2 = 2ce,
∴BG>CE.