∫EC∨AD,DE∨BC,
∴∠ADE=∠DEC=∠BCE,∠CBE=∠AED,
∴△CBE∽△DEA,
∫S△BEC = 1,S△ADE=3
∴BEAE= 13=33,
CEDF is a parallelogram,
∴△CDE≌△DCF,
∴S? CEDF=2S△CDE
∫EC∨AD,
∴△BCE∽△BFA,
∴ bee +BE = 33+3, S △ BCE: S △ BFA = (33+3) 2, that is,1:(1+3+2s △ CDE) = 3 (3+3) 2.
Solution: s △ CDE = 3.
So choose C.