Current location - Education and Training Encyclopedia - Graduation thesis - Papers on probability theory and stochastic processes
Papers on probability theory and stochastic processes
One: Solution: 1. Because the probability density function of θ is f (θ) = {1/(2π),-π.

Therefore, according to the probability characteristic function, f (t) = e [exp {jtx (t)}] = ∫ (-∞↗ +∞) exp {jtx} f (x) dx, ①.

Therefore, f (t) = e [exp {acos (wt+θ)}] = ∫ (-∞ ↗ +∞) exp {jtacos (wt+θ)} f (θ) dθ.

=[ 1/(2π)]∫(-π↗+π)exp{jtacos(wt+θ)}dθ=[ 1/(2π)]∫(-π+wt↗π+wt)exp { JTA cosy } dy。

According to the integral property, if f(t) is a periodic function with a period of t, then ∫ (-t/2+a ↗ t/2+a) f (t) dt = ∫ (-t/2 ↗ t/2) f (t) dt;

Therefore, f (v) = [1/(2π)] ∫ (-π ↗π) exp {jtacosy} dy = ∫ (-a ↗ a) exp {JTA} (dx)/(π √ a. -x? ) , ②

Comparing ① and ②, the probability density function of X(t) is f(x)={ 1/(π√a? -x? ),| x | & lta; 0, other.

According to the definition, x (θ) = e [acos (wt+θ)] = [1/(2π)] ∫ (-π ↗π) acos (wt+θ)} dθ = 0;

X (θ) = variance of a? e[cos(wt 1+θ)cos(wt2+θ)]= a? [ 1/(2π)]∫(-π↗π][cos(wt 1+θ)cos(wt2+θ)]dθ

=(a? /2) [cosw(t2-t 1)]。

2. Let t 1=t2=t, then X(θ) =(a? /2) ; So the covariance of the random variables X(t 1) and X(t2) =D[X(t)].

= e {[expected value of x (t)-x (θ)]? }=E [X? (t)]-0=a? /2.