(2) Select one to search:
Proof: extend CB to k, make BK=DE, even AK, then △ AKB △ AED.
∠∠BAF+∠DAE = 45,
∴∠KAF=45,
∴∠KAF=∠FAE.
AK = AE,AF=AF,
∴△AKF≌△AEF.
∴KF=EF.
And ∵BK=DE,
∴EF=BF+DE
Select b to find:
Proof: extend CB to K, make BK=DE, even AK, then △ AKB △ AED.
∠∠BAF+∠DAE = 45,
∴∠KAF=45,
∴∠KAF=∠FAE.
AK = AE,AF=AF,
∴△AKF≌△AEF.
∴KF=EF.
And ∵BK=DE,
∴EF=BF+DE
△CEF perimeter =CF+CE+EF
=CF+CE+(BF+DE)
=(CF+BF)+(CE+DE)
=BC+DC=2a (fixed value)
Select c to find:
Proof: As shown in the figure, intercept AG=AM on AK and connect BG, gn.
AG = AM,AB=AD,∠KAB=∠EAD,
∴△ABG≌△ADM,
∴BG=DM,∠ABG=∠ADB=45。
∫∠Abd = 45,
∴∠GBD=90。
∠∠BAF+∠DAE = 45,
∴∠KAF=45,
∴∠KAF=∠FAE.
And ∵AG=AM, AN=AN,
∴△GAN≌△NAM.
∴NG=MN,
∫∠GBD = 90 degrees,
∴BG2+BN2=NG2,
∴BN2+DM2=MN2.
To sum up, the findings of students A, B and C are all correct.