∴y'=sin4x,y''=4cos4x=4sin(4x+π/2),y'''=-4? sin4x=4? sin(4x+π),
y ' ' ' =-4? cos4x=4? Sine (4x+3π/2) ......
Therefore, y (n) = 4 (n-1) sin (4x+(n-1) π/2) can be obtained.
=>y (n+1) = 4ncos (4x+(n-1) π/2) = 4sin (4x+nπ/2), ∴ The inductive hypothesis holds.
That is, y (n) = 4 (n-1) sin (4x+(n-1) π/2), (n≥ 1).